Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
Front Pharmacol ; 15: 1352101, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449803

RESUMO

Background: Epidemiology has demonstrated that plasma free fatty acids (FFAs) can prevent the development of cancer. Our study sought to evaluate the relationship between plasma (FFA) levels and cervical cancer. Methods: In recent years, metabolomics-based approaches have been recognized as an emerging tool, so we examined the plasma FFA profiles of 114 patients with cervical cancer and 151 healthy people using liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods. Results: The data results were analyzed by multifactorial binary logistic regression analysis, and it was found that palmitic acid, docosahexaenoic acid (DHA), and total ω-3 fatty acids were negatively correlated with the risk of cervical cancer; whereas tetracosanoic acid was positively correlated with the risk of cervical cancer (OR, 1.026; 95% CI, 1.013-1.040; p < 0.001). Dynamic follow-up of 40 cervical cancer patients who successfully completed CCRT revealed that most fatty acid levels tended to increase after the end of treatment, except for palmitic and stearic acid levels, which were lower than before treatment. Conclusion: Plasma FFA profiles were altered in cervical cancer patients, which may be related to abnormal fatty acid metabolism in cervical cancer. The described changes in fatty acid profiles during CCRT may be related to the good functioning of CCRT. Further studies on plasma FFA composition and its changes due to CCRT in patients with cervical cancer are warranted.

2.
Brain Behav Immun ; 118: 423-436, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467381

RESUMO

Gut inflammation can trigger neuroinflammation and is linked to mood disorders. Microbiota-derived short-chain fatty acids (SCFAs) can modulate microglia, yet the mechanism remains elusive. Since microglia do not express free-fatty acid receptor (FFAR)2, but intestinal epithelial cells (IEC) and peripheral myeloid cells do, we hypothesized that SCFA-mediated FFAR2 activation within the gut or peripheral myeloid cells may impact microglia inflammation. To test this hypothesis, we developed a tamoxifen-inducible conditional knockout mouse model targeting FFAR2 exclusively on IEC and induced intestinal inflammation with dextran sodium sulfate (DSS), a well-established colitis model. Given FFAR2's high expression in myeloid cells, we also investigated its role by selectively deleting it in these populations of cells. In an initial study, male and female wild-type mice received 0 or 2% DSS for 5d and microglia were isolated 3d later to assess inflammatory status. DSS induced intestinal inflammation and upregulated inflammatory gene expression in microglia, indicating inflammatory signaling via the gut-brain axis. Despite the lack of significant effects of sex in the intestinal phenotype, male mice showed higher microglial inflammatory response than females. Subsequent studies using FFAR2 knockout models revealed that FFAR2 expression in IECs or immune myeloid cells did not affect DSS-induced colonic pathology (i.e. clinical and histological scores and colon length), or colonic expression of inflammatory genes. However, FFAR2 knockout led to an upregulation of several microglial inflammatory genes in control mice and downregulation in DSS-treated mice, suggesting that FFAR2 may constrain neuroinflammatory gene expression under healthy homeostatic conditions but may permit it during intestinal inflammation. No interactions with sex were observed, suggesting sex does not play a role on FFAR2 potential function in gut-brain communication in the context of colitis. To evaluate the role of FFAR2 activated by microbiota-derived SCFAs, we employed the same knockout and DSS models adding fermentable dietary fiber (0 or 2.5% inulin for 8 wks). Despite no genotype or fiber main effects, contrary to our hypothesis, inulin feeding augmented DSS-induced inflammation and signs of colitis, suggesting context-dependent effects of fiber. These findings highlight microglial involvement in colitis-associated neuroinflammation and advance our understanding of FFAR2's role in the gut-brain axis. Although not integral, we observed that the role of FFAR2 differs between homeostatic and inflammatory conditions, underscoring the need to consider different inflammatory conditions and disease contexts when investigating the role of FFAR2 and SCFAs in the gut-brain axis.


Assuntos
Colite , Microglia , Animais , Feminino , Masculino , Camundongos , Colo/metabolismo , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Células Epiteliais/patologia , Inflamação/metabolismo , Inulina/efeitos adversos , Inulina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides , Doenças Neuroinflamatórias , Receptores Acoplados a Proteínas G/metabolismo
3.
Int Immunopharmacol ; 130: 111778, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38432147

RESUMO

OBJECTIVE: To investigate the mechanism of action of fatty acid receptors, FFAR1 and FFAR4, on ulcerative colitis (UC) through fatty acid metabolism and macrophage polarization. METHODS: Dextran sulfate sodium (DSS)-induced mouse model of UC mice was used to evaluate the efficacy of FFAR1 (GW9508) and FFAR4 (GSK137647) agonists by analyzing body weight, colon length, disease activity index (DAI), and histological scores. Real-time PCR and immunofluorescence analysis were performed to quantify the levels of fatty acid metabolizing enzymes and macrophage makers. FFA-induced lipid accumulation in RAW264.7 cells was visualized by Oil Red O staining analysis, and cells were collected to detect macrophage polarization by flow cytometry. RESULTS: The combination of GW9508 and GSK137647 significantly improved DSS-induced UC symptoms, caused recovery in colon length, and decreased histological injury. GW9508 + GSK137647 treatment upregulated the expressions of CD206, lipid oxidation enzyme (CPT-1α) and anti-inflammatory cytokines (IL-4, IL-10, IL-13) but downregulated those of CD86, lipogenic enzymes (ACC1, FASN, SCD1), and pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α). Combining the two agonists decreased FFA-induced lipid accumulation and increased CD206 expression in cell-based experiments. CONCLUSION: Activated FFAR1 and FFAR4 ameliorates DSS-induced UC by promoting fatty acid metabolism to reduce lipid accumulation and mediate M2 macrophage polarization.


Assuntos
Colite Ulcerativa , Ácidos Graxos não Esterificados , Macrófagos , Receptores Acoplados a Proteínas G , Animais , Camundongos , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colo/patologia , Citocinas/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Ácidos Graxos não Esterificados/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Metilaminas/farmacologia , Metilaminas/uso terapêutico , Camundongos Endogâmicos C57BL , Propionatos/farmacologia , Propionatos/uso terapêutico , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Receptores Acoplados a Proteínas G/agonistas
4.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338979

RESUMO

Oil palm, a tropical woody oil crop, is widely used in food, cosmetics, and pharmaceuticals due to its high production efficiency and economic value. Palm oil is rich in free fatty acids, polyphenols, vitamin E, and other nutrients, which are beneficial for human health when consumed appropriately. Therefore, investigating the dynamic changes in free fatty acid content at different stages of development and hypothesizing the influence of regulatory genes on free fatty acid metabolism is crucial for improving palm oil quality and accelerating industry growth. LC-MS/MS is used to analyze the composition and content of free fatty acids in the flesh after 95 days (MS1 and MT1), 125 days (MS2 and MT2), and 185 days (MS3 and MT3) of Seedless (MS) and Tenera (MT) oil palm species fruit pollination. RNA-Seq was used to analyze the expression of genes regulating free fatty acid synthesis and accumulation, with differences in genes and metabolites mapped to the KEGG pathway map using the KEGG (Kyoto encyclopedia of genes and genomes) enrichment analysis method. A metabolomics study identified 17 types of saturated and 13 types of unsaturated free fatty acids during the development of MS and MT. Transcriptomic research revealed that 10,804 significantly different expression genes were acquired in the set differential gene threshold between MS and MT. The results showed that FabB was positively correlated with the contents of three main free fatty acids (stearic acid, myristate acid, and palmitic acid) and negatively correlated with the contents of free palmitic acid in the flesh of MS and MT. ACSL and FATB were positively correlated with the contents of three main free fatty acids and negatively correlated with free myristate acid. The study reveals that the expression of key enzyme genes, FabB and FabF, may improve the synthesis of free myristate in oil palm flesh, while FabF, ACSL, and FATB genes may facilitate the production of free palmitoleic acid. These genes may also promote the synthesis of free stearic acid and palmitoleic acid in oil palm flesh. However, the FabB gene may inhibit stearic acid synthesis, while ACSL and FATB genes may hinder myristate acid production. This study provides a theoretical basis for improving palm oil quality.


Assuntos
Arecaceae , Ácidos Graxos não Esterificados , Humanos , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos/metabolismo , Óleo de Palmeira , Cromatografia Líquida , Miristatos/metabolismo , Arecaceae/genética , Arecaceae/metabolismo , Espectrometria de Massas em Tandem , Ácidos Graxos Insaturados/metabolismo , Ácido Palmítico/metabolismo , Perfilação da Expressão Gênica , Ácidos Esteáricos/metabolismo , Óleos de Plantas/metabolismo
5.
Fitoterapia ; 173: 105803, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38171388

RESUMO

Type 2 diabetes milletus (T2DM) is a complex multifaceted disorder characterized by insulin resistance in skeletal muscle. Phyllanthus niruri L. is well reported sub-tropical therapeutically beneficial ayurvedic medicinal plant from Euphorbiaceae family used in various body ailments such as metabolic disorder including diabetes. The present study emphasizes on the therapeutic potential of Phyllanthus niruri L. and its phytochemical(s) against insulin resistance conditions and impaired antioxidant activity thereby aiding as an anti-hyperglycemic agent in targeting T2DM. Three compounds were isolated from the most active ethyl acetate fraction namely compound 1 as 1-O-galloyl-6-O-luteoyl-ß-D-glucoside, compound 2 as brevifolincarboxylic acid and compound 3 as ricinoleic acid. Compounds 1 and 2, the two polyphenols enhanced the uptake of glucose and inhibited ROS levels in palmitate induced C2C12 myotubes. PNEAF showed the potent enhancement of glucose uptake in palmitate-induced insulin resistance condition in C2C12 myotubes and significant ROS inhibition was observed in skeletal muscle cell line. PNEAF treated IR C2C12 myotubes and STZ induced Wistar rats elevated SIRT1, PGC1-α signaling cascade through phosphorylation of AMPK and GLUT4 translocation resulting in insulin sensitization. Our study revealed an insight into the efficacy of marker compounds isolated from P. niruri and its enriched ethyl acetate fraction as ROS scavenging agent and helps in attenuating insulin resistance condition in C2C12 myotubes as well as in STZ induced Wistar rat by restoring glucose metabolism. Overall, this study can provide prospects for the marker-assisted development of P. niruri as a phytopharmaceutical drug for the insulin resistance related diabetic complications.


Assuntos
Acetatos , Diabetes Mellitus Tipo 2 , Hiperglicemia , Resistência à Insulina , Phyllanthus , Ratos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Polifenóis/farmacologia , Polifenóis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1 , Ratos Wistar , Estrutura Molecular , Fibras Musculares Esqueléticas , Insulina/metabolismo , Palmitatos/metabolismo , Músculo Esquelético/metabolismo
6.
Braz. j. biol ; 842024.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469247

RESUMO

Abstract Repeatedly frying process of dietary edible oil has a potential role in the generation of free radicals. Therefore, questions have always been raised as to whether, there is an efficient and economical method to reduce the harmful effects of repeated use of frying edible oil. Since hibiscus has been stated to have a wide variety of therapeutic effects, it was important to investigate its properties against harmful effects of free radicals. The current study aspires to find out whether irradiated powder of hibiscus has a protective role against adverse effects of repeated use of frying edible oil. Thirty-five adult male albino rats were equally assigned into five groups. First groupG1 was fed with normal diet as control group, meanwhile, groupG2 the diet mixed with fresh oil, G3 diet mixed with repeatedly frying oil only, G4 diet mixed with frying oil treated with hibiscus and G5 diet mixed with frying oil treated with irradiated hibiscus. Feeding duration was six weeks. Fatty acid analyses of oil as well as peroxide values were determined. Blood and liver samples were collected for biochemical analyses as well as histological study. Repeatedly heated cooked oil has significant increases in peroxide value, acid value, free fatty acid and both conjugated diene and triene compared with repeatedly frying oil treated with hibiscus. Also there are significant increases in cholesterol and triglyceride and impaired in liver functions in G3compared with others. In addition, relative to the hibiscus groups, there is a substantial reduction in oxygen consumption in G3. Both hibiscus as well as irradiated hibiscus attract attention in order to play a vital and economical role against harmful effects of frequent use of frying edible oil on some biological functions but, irradiated hibiscus was more effective.


Resumo O processo de fritura repetida de óleo comestível da dieta tem papel potencial na geração de radicais livres que podem ter efeitos prejudiciais em algumas funções biológicas. Portanto, sempre se questionou se existe uma maneira eficiente e econômica de prevenir ou pelo menos reduzir os efeitos nocivos do uso repetido de óleo comestível para fritar. Como o hibisco tem ampla variedade de efeitos terapêuticos, foi importante investigar suas propriedades como agente antioxidante contra os efeitos nocivos dos radicais livres. O presente estudo pretende descobrir se o pó irradiado de hibisco tem papel protetor contra os efeitos adversos do uso repetido de óleo comestível para fritar. Trinta e cinco ratos albinos machos adultos foram divididos igualmente em cinco grupos. O primeiro grupo G1 foi alimentado com dieta normal como grupo controle, enquanto o grupo G2 dieta misturada com óleo fresco, dieta G3 misturada com óleo de fritura repetida, dieta G4 misturada com óleo de fritura tratada com hibisco e dieta G5 misturada com óleo de fritura tratada com hibisco irradiado. A duração da alimentação foi de seis semanas. Foram determinadas as análises de ácidos graxos de óleo, bem como os valores de peróxidos. Amostras de sangue e fígado foram coletadas para análises bioquímicas e estudo histológico. O óleo cozido repetidamente aquecido tem aumentos significativos no valor de peróxido, valor de ácido, ácido graxo livre e dieno e trieno conjugados em comparação com óleo de fritura repetidamente tratado com hibisco. Também há aumentos significativos no colesterol e triglicérides e comprometimento das funções hepáticas no G3 em comparação com outros. Além disso, em relação aos grupos de hibiscos, há uma redução substancial no consumo de oxigênio no G3. Tanto o hibisco como o hibisco irradiado chamam atenção por desempenhar papel vital e econômico contra os efeitos nocivos do uso frequente de óleo comestível para fritar em algumas funções biológicas, mas o hibisco irradiado foi mais eficaz.

7.
Braz. j. biol ; 84: e253084, 2024. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1345551

RESUMO

Abstract Repeatedly frying process of dietary edible oil has a potential role in the generation of free radicals. Therefore, questions have always been raised as to whether, there is an efficient and economical method to reduce the harmful effects of repeated use of frying edible oil. Since hibiscus has been stated to have a wide variety of therapeutic effects, it was important to investigate its properties against harmful effects of free radicals. The current study aspires to find out whether irradiated powder of hibiscus has a protective role against adverse effects of repeated use of frying edible oil. Thirty-five adult male albino rats were equally assigned into five groups. First group"G1" was fed with normal diet as control group, meanwhile, group"G2" the diet mixed with fresh oil, "G3" diet mixed with repeatedly frying oil only, "G4" diet mixed with frying oil treated with hibiscus and "G5" diet mixed with frying oil treated with irradiated hibiscus. Feeding duration was six weeks. Fatty acid analyses of oil as well as peroxide values were determined. Blood and liver samples were collected for biochemical analyses as well as histological study. Repeatedly heated cooked oil has significant increases in peroxide value, acid value, free fatty acid and both conjugated diene and triene compared with repeatedly frying oil treated with hibiscus. Also there are significant increases in cholesterol and triglyceride and impaired in liver functions in "G3"compared with others. In addition, relative to the hibiscus groups, there is a substantial reduction in oxygen consumption in "G3". Both hibiscus as well as irradiated hibiscus attract attention in order to play a vital and economical role against harmful effects of frequent use of frying edible oil on some biological functions but, irradiated hibiscus was more effective.


Resumo O processo de fritura repetida de óleo comestível da dieta tem papel potencial na geração de radicais livres que podem ter efeitos prejudiciais em algumas funções biológicas. Portanto, sempre se questionou se existe uma maneira eficiente e econômica de prevenir ou pelo menos reduzir os efeitos nocivos do uso repetido de óleo comestível para fritar. Como o hibisco tem ampla variedade de efeitos terapêuticos, foi importante investigar suas propriedades como agente antioxidante contra os efeitos nocivos dos radicais livres. O presente estudo pretende descobrir se o pó irradiado de hibisco tem papel protetor contra os efeitos adversos do uso repetido de óleo comestível para fritar. Trinta e cinco ratos albinos machos adultos foram divididos igualmente em cinco grupos. O primeiro grupo "G1" foi alimentado com dieta normal como grupo controle, enquanto o grupo "G2" dieta misturada com óleo fresco, dieta "G3" misturada com óleo de fritura repetida, dieta "G4" misturada com óleo de fritura tratada com hibisco e dieta "G5" misturada com óleo de fritura tratada com hibisco irradiado. A duração da alimentação foi de seis semanas. Foram determinadas as análises de ácidos graxos de óleo, bem como os valores de peróxidos. Amostras de sangue e fígado foram coletadas para análises bioquímicas e estudo histológico. O óleo cozido repetidamente aquecido tem aumentos significativos no valor de peróxido, valor de ácido, ácido graxo livre e dieno e trieno conjugados em comparação com óleo de fritura repetidamente tratado com hibisco. Também há aumentos significativos no colesterol e triglicérides e comprometimento das funções hepáticas no "G3" em comparação com outros. Além disso, em relação aos grupos de hibiscos, há uma redução substancial no consumo de oxigênio no "G3". Tanto o hibisco como o hibisco irradiado chamam atenção por desempenhar papel vital e econômico contra os efeitos nocivos do uso frequente de óleo comestível para fritar em algumas funções biológicas, mas o hibisco irradiado foi mais eficaz.


Assuntos
Animais , Ratos , Hibiscus , Óleos de Plantas/farmacologia , Colesterol , Culinária , Temperatura Alta
8.
Oncol Rep ; 51(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38131223

RESUMO

Patients with end­stage metastatic disease have limited treatment options and those diagnosed with triple negative breast cancer (Her2, Estrogen receptor, Progesterone receptor) have a poor prognosis. Using a triple negative mammary tumor model selected for brain metastasis (4T1Br4) in the mouse, treatment options that may increase survival when therapeutics are applied at post­metastasis were assessed. Anti­parasitic benzimidazoles (BZs) destabilize microtubules, inhibit metabolic pathways, reduce cell proliferation, and induce apoptosis in tumor cells. Co­administration of two BZs was selected, oxfendazole (OFZ) and parbendazole (PBZ), shown to overcome resistance development in anthelmintic effects by imposing metabolic delay to assess if multiple BZ approach is also suitable to enhance anticancer effects. It has been previously reported that treatment of mammary tumor­bearing mice at an early stage with chitin microparticles (CMPs) decreased tumor growth and metastases by enhancing both innate M1 macrophage and TH1 adaptive immune response. Oral administration of CMPs was previously revealed to affect the gut in intestinal inflammation. A combination BZ (OFZ/PBZ) and CMP treatment was tested to target tumor development and metastasis and effects were compared in response to monotherapies of the same compounds or to untreated mice. The results demonstrated increased survival, decreased tumor cell proliferation, decreased metastasis in lungs and brain, increased levels of fecal SCFAs butyric, acetic, propionic and valeric acids with increased butyric and propionic acid levels in brain biopsies in combination treated compared with untreated mice. At the primary tumor, SCFA receptor FFAR2 expression was increased in combination treatment compared with untreated mice, suggestive of a non­invasive cancer phenotype. The superior cytotoxic effects of OFZ/PBZ were confirmed as opposed to single treatment with OFZ or PBZ using 3D spheroids generated from a human breast cancer cell line, MDA­MB­468. These data are compelling for treatment option possibility even at late stages of metastasized breast cancer.


Assuntos
Anti-Helmínticos , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Anti-Helmínticos/metabolismo , Macrófagos/metabolismo , Linhagem Celular Tumoral
9.
Neurotox Res ; 42(1): 3, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095760

RESUMO

Toxic exposures to heavy metals, such as iron (Fe) and manganese (Mn), can result in long-range neurological diseases and are therefore of significant environmental and medical concerns. We have previously reported that damage to neuroblastoma-derived dopaminergic cells (SH-SY5Y) by both Fe and Mn could be prevented by pre-treatment with nicotine. Moreover, butyrate, a short chain fatty acid (SCFA) provided protection against salsolinol, a selective dopaminergic toxin, in the same cell line. Here, we broadened the investigation to determine whether butyrate might also protect against Fe and/or Mn, and whether, if combined with nicotine, an additive or synergistic effect might be observed. Both butyrate and nicotine concentration-dependently blocked Fe and Mn toxicities. Ineffective concentrations of nicotine and butyrate, when combined, provided full protection against both Fe and Mn. Moreover, the effects of nicotine but not butyrate could be blocked by mecamylamine, a non-selective nicotinic antagonist. On the other hand, the effects of butyrate, but not nicotine, could be blocked by beta-hydroxy butyrate, a fatty acid-3 receptor antagonist. These results not only provide further support for neuroprotective effects of both nicotine and butyrate but also indicate distinct mechanisms of action for each one. Furthermore, potential utility of butyrate and nicotine combination against heavy metal toxicities is suggested.


Assuntos
Neuroblastoma , Nicotina , Humanos , Nicotina/toxicidade , Manganês/toxicidade , Ferro/toxicidade , Butiratos/farmacologia , Linhagem Celular Tumoral , Técnicas de Cultura de Células
10.
J Neuroinflammation ; 20(1): 302, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38111048

RESUMO

G protein-coupled receptor 120 (GPR120, Ffar4) is a sensor for long-chain fatty acids including omega-3 polyunsaturated fatty acids (n-3 PUFAs) known for beneficial effects on inflammation, metabolism, and mood. GPR120 mediates the anti-inflammatory and insulin-sensitizing effects of n-3 PUFAs in peripheral tissues. The aim of this study was to determine the impact of GPR120 stimulation on microglial reactivity, neuroinflammation and sickness- and anxiety-like behaviors by acute proinflammatory insults. We found GPR120 mRNA to be enriched in  both murine and human microglia, and in situ hybridization revealed GPR120 expression in microglia of the nucleus accumbens (NAc) in mice. In a manner similar to or exceeding n-3 PUFAs, GPR120 agonism (Compound A, CpdA) strongly attenuated lipopolysaccharide (LPS)-induced proinflammatory marker expression in primary mouse microglia, including tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß), and inhibited nuclear factor-ĸB translocation to the nucleus. Central administration of CpdA to adult mice blunted LPS-induced hypolocomotion and anxiety-like behavior and reduced TNF-α, IL-1ß and IBA-1 (microglia marker) mRNA in the NAc, a brain region modulating anxiety and motivation and implicated in neuroinflammation-induced mood deficits. GPR120 agonist pre-treatment attenuated NAc microglia reactivity and alleviated sickness-like behaviors elicited by central injection TNF-α and IL-1ß. These findings suggest that microglial GPR120 contributes to neuroimmune regulation and behavioral changes in response to acute infection and elevated brain cytokines. GPR120 may participate in the protective action of n-3 PUFAs at the neural and behavioral level and offers potential as treatment target for neuroinflammatory conditions.


Assuntos
Ácidos Graxos Ômega-3 , Microglia , Receptores Acoplados a Proteínas G , Adulto , Animais , Humanos , Camundongos , Ansiedade/induzido quimicamente , Ansiedade/tratamento farmacológico , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Microglia/metabolismo , Doenças Neuroinflamatórias , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
11.
Adipocyte ; 12(1): 2276346, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37948192

RESUMO

The cytokine interleukin (IL)-27 has been reported to induce thermogenesis in white adipocytes. However, it remains unknown whether IL-27-mediated adipocyte energy dissipation is paralleled by an elevated energy supply from lipids and/or carbohydrates. We hypothesized that IL-27 increases lipolysis and glucose uptake in white adipocytes, thereby providing substrates for thermogenesis. Unexpectedly, we found that treatment of 3T3-L1 adipocytes with IL-27 reduced intra- and extracellular free fatty acid (FFA) concentrations and that phosphorylation of hormone-sensitive lipase (HSL) was not affected by IL-27. These results were confirmed in subcutaneous white adipocytes. Further, application of IL-27 to 3T3-L1 adipocytes increased intracellular triglyceride (TG) content but not mitochondrial ATP production nor expression of enzymes involved in beta-oxidation indicating that elevated esterification rather than oxidation causes FFA disappearance. In addition, IL-27 significantly increased GLUT1 protein levels, basal glucose uptake as well as glycolytic ATP production, suggesting that increased glycolytic flux due to IL-27 provides the glycerol backbone for TG synthesis. In conclusion, our findings suggest IL-27 increases glucose uptake and TG deposition in white adipocytes.


Assuntos
Adipócitos Brancos , Interleucina-27 , Animais , Camundongos , Células 3T3-L1 , Trifosfato de Adenosina/metabolismo , Adipócitos Brancos/metabolismo , Esterificação , Ácidos Graxos/metabolismo , Glucose/metabolismo , Interleucina-27/metabolismo , Interleucinas/metabolismo , Lipólise
12.
Brain Commun ; 5(6): fcad285, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37953845

RESUMO

Caudo-rostral migration of pathological forms of α-synuclein from the gut to the brain is proposed as an early feature in Parkinson's disease pathogenesis, but the underlying mechanisms remain unknown. Intestinal epithelial enteroendocrine cells sense and respond to numerous luminal signals, including bacterial factors, and transmit this information to the brain via the enteric nervous system and vagus nerve. There is evidence that gut bacteria composition and their metabolites change in Parkinson's disease patients, and these alterations can trigger α-synuclein pathology in animal models of the disorder. Here, we investigated the effect of toll-like receptor and free fatty acid receptor agonists on the intracellular level of α-synuclein and its release using mouse secretin tumour cell line 1 enteroendocrine cells. Secretin tumour cell line 1 enteroendocrine cells were treated for 24 or 48 h with toll-like receptor agonists (toll-like receptor 4 selective lipopolysaccharide; toll-like receptor 2 selective Pam3CysSerLys4) and the free fatty acid receptor 2/3 agonists butyrate, propionate and acetate. The effect of selective receptor antagonists on the agonists' effects after 24 hours was also investigated. The level of α-synuclein protein was measured in cell lysates and cell culture media by western blot and enzyme-linked immunosorbent assay. The level of α-synuclein and tumour necrosis factor messenger RNA was measured by quantitative reverse transcription real-time polymerase chain reaction. Stimulation of secretin tumour cell line 1 enteroendocrine cells for 24 and 48 hours with toll-like receptor and free fatty acid receptor agonists significantly increased the amount of intracellular α-synuclein and the release of α-synuclein from the cells into the culture medium. Both effects were significantly reduced by antagonists selective for each receptor. Toll-like receptor and free fatty acid receptor agonists also significantly increased tumour necrosis factor transcription, and this was effectively inhibited by corresponding antagonists. Elevated intracellular α-synuclein increases the likelihood of aggregation and conversion to toxic forms. Factors derived from bacteria induce α-synuclein accumulation in secretin tumour cell line 1 enteroendocrine cells. Here, we provide support for a mechanism by which exposure of enteroendocrine cells to specific bacterial factors found in Parkinson's disease gut dysbiosis might facilitate accumulation of α-synuclein pathology in the gut.

13.
Res Sq ; 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37886507

RESUMO

Toxic exposures to heavy metals, such as iron (Fe) and manganese (Mn), can result in long-range neurological diseases and are therefore of significant environmental and medical concerns. We have previously reported that damage to neuroblastoma-derived dopaminergic cells (SH-SY5Y) by both Fe and Mn could be prevented by pre-treatment with nicotine. Moreover, butyrate, a short chain fatty acid (SCFA) provided protection against salsolinol, a selective dopaminergic toxin, in the same cell line. Here, we broadened the investigation to determine whether butyrate might also protect against Fe and/or Mn, and whether, if combined with nicotine, an additive or synergistic effect might be observed. Both butyrate and nicotine concentration-dependently blocked Fe and Mn toxicities. The ineffective concentrations of nicotine and butyrate, when combined, provided full protection against both Fe and Mn. Moreover, the effects of nicotine but not butyrate could be blocked by mecamylamine, a non-selective nicotinic antagonist. On the other hand, the effects of butyrate, but not nicotine, could be blocked by beta-hydroxy butyrate, a fatty acid-3 receptor antagonist. These results not only provide further support for neuroprotective effects of both nicotine and butyrate but indicate distinct mechanisms of action for each one. Furthermore, potential utility of the combination of butyrate and nicotine against heavy metal toxicities is suggested.

14.
J Cell Biochem ; 124(11): 1695-1704, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37795573

RESUMO

Insulin resistance is a critical mediator of the development of nonalcoholic fatty liver disease (NAFLD). An excess influx of fatty acids to the liver is thought to be a pathogenic cause of insulin resistance and the development of NAFLD. Although elevated levels of free fatty acids (FFA) in plasma contribute to inducing insulin resistance and NAFLD, the molecular mechanism is not completely understood. This study aimed to determine whether inositol polyphosphate multikinase (IPMK), a regulator of insulin signaling, plays any role in FFA-induced insulin resistance in primary hepatocytes. Here, we show that excess FFA decreased IPMK expression, and blockade of IPMK decrease attenuated the FFA-induced suppression of protein kinase B (Akt) phosphorylation in primary mouse hepatocytes (PMH). Moreover, overexpression of IPMK prevented the FFA-induced suppression of Akt phosphorylation by insulin, while knockout of IPMK exacerbated insulin resistance in PMH. In addition, treatment with MG132, a proteasomal inhibitor, inhibits FFA-induced decrease in IPMK expression and Akt phosphorylation in PMH. Furthermore, treatment with the antioxidant N-acetyl cysteine (NAC) significantly attenuated the FFA-induced reduction of IPMK and restored FFA-induced insulin resistance in PMH. In conclusion, our findings suggest that excess FFA reduces IPMK expression and contributes to the FFA-induced decrease in Akt phosphorylation in PMH, leading to insulin resistance. Our study highlights IPMK as a potential therapeutic target for preventing insulin resistance and NAFLD.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ácidos Graxos não Esterificados/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Insulina/farmacologia , Hepatócitos/metabolismo
15.
J Oleo Sci ; 72(9): 859-867, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37648463

RESUMO

There are significant concerns regarding the quality of vegetable oils in the food and biofuel industries. In this study, we explored the preparation of high- quality oil from high-free fatty acid (FFA) vegetable oil using an ammonia/MeOH solvent as an alkali base. Among the six tested solvents, MeOH was the most suitable for the separation of the oil and FFAs. Among the three alkali bases, ammonia enhanced the miscibility of FFAs in MeOH by forming ammonium salts. The amounts of FFAs in the upper layer and oil in the lower layer were positively correlated (r = 0.9348 and 0.9617, respectively) with MeOH. With increasing MeOH concentration, the amount of oil in the lower layer increased along with the FFAs in the upper layer. Using the molar ratio of ammonia to FFA 1:1 and the ratio (v/w) of MeOH to oil 4:3, 91.6% FFAs and 97.8% oil in the upper and lower layers, respectively, were produced from 50% FFA oil. Using a relational expression of FFAs and oil in the upper layer, 97.1% FFAs and 99.6% oil in each layer was obtained from 10% FFA oil. The oil in the lower layer was further purified by extraction with MeOH. This method is easy and efficient for the separation and purification of oil, accompanied by the reuse of reagents with almost no loss of raw materials.


Assuntos
Metanol , Óleos de Plantas , Amônia , Ácidos Graxos não Esterificados , Solventes , Álcalis
16.
Food Chem ; 427: 136752, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37392621

RESUMO

The oleic acid/alpha-lactalbumin complex HAMLET (human alpha-lactalbumin made lethal to tumors) is cytotoxic to various cancerous cell lines and is assembled from alpha-lactalbumin (ALA) and free oleic acid (OA). HAMLET is also cytotoxic to normal immature intestinal cells. It remains unclear if HAMLET, experimentally assembled with OA and heat, can spontaneously assemble in frozen human milk over time. To approach this issue, we used a set of timed proteolytic experiments to evaluate the digestibility of HAMLET and native ALA. The purity of HAMLET in human milk was confirmed by ultra high performance liquid chromatography coupled to tandem mass spectrometry and western blot to resolve the ALA and OA components. Timed proteolytic experiments were used to identify HAMLET in whole milk samples. Structural characterization of HAMLET was performed by Fournier transformed infrared spectroscopy and indicated a transformation of secondary structure with increased alpha-helical character of ALA upon binding to OA.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Ácido Oleico/química , Leite Humano/metabolismo , Lactalbumina/química , Neoplasias/patologia , Antineoplásicos/química , Digestão , Ácidos Oleicos/química
17.
J Pharm Sci ; 112(12): 3099-3108, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37422283

RESUMO

Degradation of polysorbates in biopharmaceutical formulations can induce the formation of sub-visible particles (SvPs) in the form of free-fatty acids (FFAs) and potentially protein aggregates. Flow-imaging microscopy (FIM) is one of the most common techniques for enumerating and characterizing the SvPs, allowing for collection of image data of the SvPs in the size ranges of two to several hundred micrometers. The vast amounts of data obtained with FIM do not allow for rapid manual characterization by an experienced analyst and can be ambiguous. In this work, we present the application of a custom convolutional neural network (CNN) for classification of SvP images of FFAs, proteinaceous particles and silicon oil droplets, by FIM. The network was then used to predict the composition of artificially pooled test samples of unknown and labeled data with varying compositions. Minor misclassifications were observed between the FFAs and proteinaceous particles, considered tolerable for application to pharmaceutical development. The network is considered to be suitable for fast and robust classification of the most common SvPs found during FIM analysis.


Assuntos
Produtos Biológicos , Polissorbatos , Óleos de Silicone , Microscopia/métodos , Química Farmacêutica/métodos , Tamanho da Partícula , Proteínas , Ácidos Graxos não Esterificados , Redes Neurais de Computação
18.
Ultrason Sonochem ; 98: 106472, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37348259

RESUMO

A continuous esterification process is employed to decrease the free fatty acid (FFA) concentration of FFA-rich mixed crude palm oil. Both optimal and recommended conditions are determined for the esterification reaction conditions and the geometry of the 3D-printed rotor design in the rotor-stator hydrodynamic cavitation reactor. This study is primarily concerned with the effect of the cavitation device configuration, especially the rotor design, on FFA reduction. Instead of conventional spherical or cylindrical drilled holes, a point angle cone-shaped hole is used to create cavities over the rotor surface. These point angles are adjusted to clarify their effect on FFA reduction. The response surface methodology is applied to determine the optimal concentrations of methanol and sulfuric acid, rotor speed, hole diameter and depth, and cone point angle. The recommended conditions are 20.8 wt% methanol, 2.6 wt% sulfuric acid, 3000 rpm, 5 mm hole diameter, 5 mm hole depth, and 110°, respectively. Under this configuration, the FFA content is reduced from 12.014 wt% to around 1 wt%. A maximum yield of 97.34 vol% esterified oil is obtained through a completed phase separation step, and 93.31 vol% pure oil is collected after the cleansing step. The recommended conditions result in reduced chemical usage, cheaper FFA reduction, and lower environmental impact. This creative rotor design effectively improves our understanding of the geometry of the cavitation device, thus enhancing the cavitation effect in industrial operations.

19.
Cancer Cell Int ; 23(1): 126, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355607

RESUMO

BACKGROUND: Papillary renal cell carcinoma (pRCC) is a highly metastatic genitourinary cancer and is generally irresponsive to common treatments used for the more prevalent clear-cell (ccRCC) subtype. The goal of this study was to examine the novel role of the free fatty-acid receptor-1 (FFA1/GPR40), a cell-surface expressed G protein-coupled receptor that is activated by medium-to-long chained dietary fats, in modulation of pRCC cell migration invasion, proliferation and tumor growth. METHODS: We assessed the expression of FFA1 in human pRCC and ccRCC tumor tissues compared to patient-matched non-cancerous controls, as well as in RCC cell lines. Using the selective FFA1 agonist AS2034178 and the selective FFA1 antagonist GW1100, we examined the role of FFA1 in modulating cell migration, invasion, proliferation and tumor growth and assessed the FFA1-associated intracellular signaling mechanisms via immunoblotting. RESULTS: We reveal for the first time that FFA1 is upregulated in pRCC tissue compared to patient-matched non-cancerous adjacent tissue and that its expression increases with pRCC cancer pathology, while the inverse is seen in ccRCC tissue. We also show that FFA1 is expressed in the pRCC cell line ACHN, but not in ccRCC cell lines, suggesting a unique role in pRCC pathology. Our results demonstrate that FFA1 agonism promotes tumor growth and cell proliferation via c-Src/PI3K/AKT/NF-κB and COX-2 signaling. At the same time, agonism of FFA1 strongly inhibits migration and invasion, which are mechanistically mediated via inhibition of EGFR, ERK1/2 and regulators of epithelial-mesenchymal transition. CONCLUSIONS: Our data suggest that FFA1 plays oppositional growth and migratory roles in pRCC and identifies this receptor as a potential target for modulation of pathogenesis of this aggressive cancer.

20.
Eur J Pharmacol ; 951: 175777, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37182594

RESUMO

The adenosine A1 receptor plays important roles in tuning free fatty acid (FFA) levels and represents an attractive target for metabolic disorders. Though remarkable progress has been achieved in the exploitation of effective (orthosteric) A1 receptor agonists in modulating aberrant FFA levels, the effect of A1 receptor allosteric modulation on lipid homeostasis is less investigated. Herein we sought to explore the effect of an allosteric modulator on the action of an A1 receptor orthosteric agonist in regulating the lipolytic process in vitro and in vivo. We examined the binding kinetics of a selective A1 receptor agonist 2-chloro-N6-cyclopentyladenosine (CCPA) in the absence or presence of an allosteric modulator (2-amino-4,5-dimethyl-3-thienyl)-[3-(trifluoromethyl)-phenyl]methanone (PD81,723) on rat adipocyte membranes. We also examined the allosteric effects of PD81,723 on mediating the CCPA-induced inhibition of cAMP accumulation, HSL (hormone-sensitive lipase) phosphorylation and FFA production in in vitro and in vivo models. Our results demonstrated that PD81,723 slowed down the dissociation of CCPA from the A1 receptor, which, consequently, potentiated the antilipolytic action of CCPA through downregulating the cAMP/HSL pathway. Our study exemplified the application of A1 receptor allosteric modulators as an alternative for metabolic disease treatments.


Assuntos
Tecido Adiposo , Receptores Purinérgicos P1 , Ratos , Animais , Receptores Purinérgicos P1/metabolismo , Tecido Adiposo/metabolismo , Adipócitos , Lipólise , Adenosina/metabolismo , Receptor A1 de Adenosina/metabolismo , Regulação Alostérica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA